The development of benign methylation reactions utilizing CO2 as a one-carbon building block would enable a more sustainable chemical industry. Electrochemical CO2 reduction has been extensively studied, but its application for reductive methylation reactions remains out of the scope of current electrocatalysis. Here, we report the first electrochemical reductive N-methylation reaction with CO2 and demonstrate its compatibility with amines, hydroxylamines, and hydrazine. Catalyzed by cobalt phthalocyanine molecules supported on carbon nanotubes, the N-methylation reaction proceeds in aqueous media via the chemical condensation of an electrophilic carbon intermediate, proposed to be adsorbed or near-electrode formaldehyde formed from the four-electron reduction of CO2, with nucleophilic nitrogenous reactants and subsequent reduction.